=∫√1−4x2.dx
=2∫√14−x2.dx
=2∫√(12)2−x2.dx
Using ∫√a2−x2.dx
=12x√a2−x2+a22sin−1xa+C
=2⎡⎢
⎢
⎢⎣x2√(12)2−x2+(12)2.12sin−1x12+C1⎤⎥
⎥
⎥⎦
Where C1 is constant of integration
=2[x2√(14)−x2+14.12sin−12x+C1]
=x√14−x2+14sin−12x+2C1
=x√1−4x24+14sin−12x+C
=x2√1−4x2+14sin−12x+C
Where C=2C1