Let I=∫xsin−1xdx
Taking sin−1x as first function and x as second function and integrating by parts, we obtain
I=sin−1x∫xdx−∫{(ddxsin−1x)∫xdx}dx
=sin−1x(x22)−∫1√1−x2⋅x22dx
=x2sin−1x2+12∫−x2√1−x2dx
=x2sin−1x2+12∫{1−x2√1−x2−1√1−x2}dx
=x2sin−1x2+12∫{√1−x2−1√1−x2}dx
=x2sin−1x2+12∫{∫√1−x2dx−∫1√1−x2dx}
=x2sin−1x2+12{x2√1−x2+12sin−1x−sin−1x}+C
=x2sin−1x2+x4√1−x2+14sin−1x−12sin−1x+C
=14(2x2−1)sin−1x+x4√1−x2+C