1x(x4−1)
Multiplying numerator and denominator by x3, we obtain
1x(x4−1)=x3x4(x4−1)
∴∫1x(x4−1)dx=∫x3x4(x4−1)dx
Let x4=t⇒4x3dx=dt
∴∫x3x4(x4−1)dx=14∫dtt(t−1)
Let 1t(t−1)=At+B(t−1)
⇒1=A(t−1)+Bt ........... (1)
Substituting =0 and 1 in (1), we obtain
A=−1 and B=1
⇒1t(t−1)=−1t+tt−1
⇒∫1x(x4−1)dx=14∫{−1t+1t−1}dt
=14[−log|t|+log|t−1|]+C
=14log∣∣∣t−1t∣∣∣+C
=14log∣∣∣x4−1x4∣∣∣+C