Consider the following integral.
I=∫exsinxdx
Using a ilate rule in a given integral.
I=ex∫sinxdx−∫(d(ex)dx∫(sinx))dx
I=−excosx+∫excosxdx
I=−excosx+exsinx−∫exsinxdx
I=−excosx+exsinx−I
2I=ex(sinx−cosx)+C
I=ex2(sinx−cosx)+C
Hence, this is the required answer.