wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate wrt x
tanxdx

Open in App
Solution

tanxdx
Let t2=tanx
2tdt=sec2xdx
dx=2tdtsec2x
dx=2tdt1+t4
=2t21+t4dt
=(1+t2(1t2)1+t4dt
=1+t21+t4dt1t21+t4dt
=1+1t2t2+1t2dt+11t2t2+1t2dt
=1+1t2(t+1t)2+2dt+11t2(t1t)2+2dt
Let z=t1t
dz=(1+1t2)dt
and
let u=t+1t
du=(11t2)dt
=dzz2+(2)2+duu2(2)2
=12tan1(z2)+122logu2u+2+C
=12tan1⎜ ⎜ ⎜t1t2⎟ ⎟ ⎟+122log∣ ∣ ∣t+1t2t+1t+2∣ ∣ ∣+C
=12tan1⎜ ⎜ ⎜t1t2⎟ ⎟ ⎟+122logt22t+1t2+2t+1+C
=12tan1(tanx12tanx)+122logtanx2tanx+1tanx+2tanx+1+C
tanxdx
=12tan1(tanx12tanx)+122logtanx2tanx+1tanx+2tanx+1+C





















flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon