The correct option is B −17
Given,(49x2−1)+(1+7x)2=((7x)2−12)+(1+7x)2=(7x−1)(7x+1)+(1+7x)(1+7x)=(1+7x)(7x−1+1+7x)[Taking (1+7x) common]=(1+7x)(14x)
To find the zeroes of a polynomial expression, we must equate it to zero.(1+7x)(14x)=0⇒(1+7x)=0; (14x)=0∴x=−17,0Zeroes are −17 & 0.