Is cos(A+B+C)=cosAcosBcosC, then 8sin(B+C)sin(C+A)sin(A+B)+sin2Asin2Bsin2C=0
Open in App
Solution
Given that cosAcos(B+C)−sinAsin(B+C)=cosAcosBcosC ∴cosA[cos(B+C)−cosBcosC]=sinAsin(B+C) or cosA(−sinBsinC)=sinAsin(B+C) ∴sin(B+C)=−cosAsinBsinCsinA write similar values of sin(C+A),sin(A+B) and
multiply and put sinAcosA=12sin2A