Checking P(A)∪P(B)=P(A∪B)
Let A={0,1} and B={1,2}
∴A∪B={0,1,2}
So, P(A∪B)={ϕ,{0},{1},{2},{0,1},{0,2},{1,2}{0,1,2}}
Now, P(A)={ϕ,{0},{1},{0,1}}
And P(B)={ϕ,{1},{2},{1,2}}
∴P(A)∪P(B)={ϕ,{0},{1},{2},{0,1},{1,2}}
∴P(A)∪P(B)≠P(A∪B)
So, given statement is false.