∣x−1−x2∣≤∣x2−3x+4∣
1. ∣x−1−x2∣≤x2−3x+4`
a. −(x2−3x+4)≤(x−1−x2)
⇒2x−3≤0
⇒x≤32 - Equation a
b. x−1−x2≤x2−3x+4
⇒2x2−4x+5≥0
D≡16−40<0,a=2>0 solution is x∈R - Equation b
2. x2−3x+4≤−∣x−1−x2∣
c. (x−1−x2)≤−x2+3x−4
⇒2x−3≥0
⇒x≥32 -Equation c
d. (x−1−x2)≥x2−3x+4
⇒2x2−4x+5≤0
⇒D≡16−40<0,a=2>0,2x2−4x+5>0∀x∈R
Not <0 - Equation d
Range is x∈(−∞,32]