wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(x2+y2)2=xy, then dydx

Open in App
Solution

We have,
(x2+y2)2=xy

On differentiating w.r.t x, we get
ddx(x2+y2)2=ddx(xy)

2(x2+y2)ddx(x2+y2)=xddx(y)+yddx(x)

2(x2+y2)(2x+2ydydx)=xdydx+y×1

4(x2+y2)(x+ydydx)=xdydx+y

4x(x2+y2)+4xy(x2+y2)dydx=xdydx+y

4xy(x2+y2)dydxxdydx=y4x(x2+y2)

[4xy(x2+y2)x]dydx=y4x(x2+y2)

dydx=y4x(x2+y2)[4xy(x2+y2)x]

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon