We have,
(x2+y2)2=xy
On differentiating w.r.t x, we get
ddx(x2+y2)2=ddx(xy)
2(x2+y2)ddx(x2+y2)=xddx(y)+yddx(x)
2(x2+y2)(2x+2ydydx)=xdydx+y×1
4(x2+y2)(x+ydydx)=xdydx+y
4x(x2+y2)+4xy(x2+y2)dydx=xdydx+y
4xy(x2+y2)dydx−xdydx=y−4x(x2+y2)
[4xy(x2+y2)−x]dydx=y−4x(x2+y2)
dydx=y−4x(x2+y2)[4xy(x2+y2)−x]
Hence, this is the answer.