Let 0<P(A)<1,0<P(B)<1 and P(A∪B)=P(A)+P(B)−P(A)P(B). Then
Given,
P(A∪B)=P(A)+P(B)−P(A)P(B)
1)P(BA)=P(P(B∩A)A)=P(P(B)∗P(A)A)=P(B)
2)P(Ac∪Bc)=P(Ac)+P(Bc)−P(Ac∩Bc)
3)P((A∪B)c)=(1−P(A∪B))=(1−P(A)−P(B)+P(A)P(B))
⇒P((A∪B)c)=(1−P(A))(1−P(B))=P(Ac)P(Bc).
4)P(AB)=(P(A∩B)P(B))
P(AB)=(P(A)P(B)B)=P(A)
Therefore,options 3,4 are correct