wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let 0<P(A)<1,0<P(B)<1 and P(AB)=P(A)+P(B)P(A)P(B). Then

A
P(BA)=P(B)P(A)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
P(ACBC)=P(AC)+P(BC)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
P((AB)C)=P(AC)P(BC)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
P(AB)=P(A)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
C P((AB)C)=P(AC)P(BC)
D P(AB)=P(A)

Given,
P(AB)=P(A)+P(B)P(A)P(B)
1)P(BA)=P(P(BA)A)=P(P(B)P(A)A)=P(B)
2)P(AcBc)=P(Ac)+P(Bc)P(AcBc)
3)P((AB)c)=(1P(AB))=(1P(A)P(B)+P(A)P(B))
P((AB)c)=(1P(A))(1P(B))=P(Ac)P(Bc).
4)P(AB)=(P(AB)P(B))
P(AB)=(P(A)P(B)B)=P(A)
Therefore,options 3,4 are correct


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Conditional Probability
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon