We have,
1+10∑r=1(3r⋅ 10Cr+r⋅ 10Cr)
=1+10∑r=13r⋅ 10Cr+1010∑r=1 9Cr−1
=1+(410−1)+(10×29)
=210(45+5)=210(α⋅45+β)
∴α=1 and β=5
Now, f(1)<0 and f(5)<0
∴f(1)<0⇒−k2<0⇒k∈R−{0}
and f(5)<0
⇒16−k2<0
or, k2−16>0
⇒k∈(−∞,−4)∪(4,∞)
Hence, the smallest positive integral values of k=5.