Let (1+x2)2(1+x)n=∑n+4k=0akxk. If a1,a2 and a3 are in A.P, find sum of all possible values of n ?
Open in App
Solution
(1+x2)2(1+x)n =(1+2x2+x4(1+nx+nC2x2...) Hence a1=nC1=n a2=2+nC2. a3=nC3+2nC1 Now 2a2=a1+a3 Or 4+2nC2=3nC1+nC3 4+(n(n−1))=3n+n(n−1)(n−2)6 4−3n=n(n−1)[n−26−1] 4−3n=n(n−1)(n−8)6 24−18n=n(n2−9n+8) n3−9n2+8n−24+18n=0 n3−9n2+26n−24=0. Now sum of roots =−coefficientofx2coefficientofx3 =9.