The correct options are
B 2
C 3
D 4
L.H.S
=(1+2x2+x4)(1+nC1x+nC2x2+nC3x3+...+nCnxn)
R.H.S
=a0+a1 x+a2 x2+a3 x3+.....an+4 xn+4
So by comparing the coefficients, we can write
a1=nC1
a2=nC2+2
a3=nC3+2 (nC1)
We know that a1,a2,a3 are in A.P so,
⇒2a2=a1+a3
⇒2(nC2+2)=nC1+nC3+2 nC1
⇒n(n−1)+4=3n+n(n−1)(n−2)6
⇒n3−9n2+26n−24=0
⇒(n−2)(n2−7n+12)=0
⇒(n−2)(n−3)(n−4)=0
⇒n=2,3,4