The correct option is B a0+a2+...+a18 is even
(1+x+x2)9=a0+a1x+a2x2+...+a18x18
Put x=−1 in the above equation, we have
1=a0−a1+a2−...+a18⇒1+a1+a3+...+a17=a0+a2+...+a18
Now put x=1, we have
39=a0+a1+a2+...+a17+a18⇒39+1=2(a0+a2+...+a18)⇒a0+a2+...+a18=39+12=273+132 =(27+1)(272+1−27)2 =14(272−26)
which is an even number.