Let a>0,c>0,b=√ac,a,c and ac≠1,N>0 Prove that 12logaNlogcN=logaN−logbNlogbN−logcN
Open in App
Solution
Using Base change theorem, we get RHS =1logNa−1logNc1logNb−1logNc =logNb−logNalogNblogNalogNc−logNblogNclogNb Using Quotient law =logN(ba)logNalogNclogN(cb) We have b=√ac⇒√b√b=√ac..........(1) ⇒√ba=√cb Substituting the above in eqn(1) we get logN(√cb)logNalogNclogN(cb)=12logNclogNa =12logac= L.H.S