Given that f,g:A→B are the functions defined by,
f( x )= x 2 −x,x∈A g( x )=2| x− 1 2 |−1,x∈A
And A={ −1,0,1,2 },B={ −4,−2,0,2 }
Calculate f( −1 ),
f( −1 )= ( −1 ) 2 −( −1 ) f( −1 )=2
Calculate g( −1 ),
g( −1 )=2| ( −1 )− 1 2 |−1 g( −1 )=2( 3 2 )−1 g( −1 )=2
It can be observed that f( −1 )=g( −1 ).
Calculate f( 0 ),
f( 0 )= 0 2 −( 0 ) f( 0 )=0
Calculate g( 0 ),
g( 0 )=2| ( 0 )− 1 2 |−1 g( 0 )=2( 1 2 )−1 g( 0 )=0
It can be observed that f( 0 )=g( 0 ).
Calculate f( 1 ),
f( 1 )= ( 1 ) 2 −( 1 ) f( 1 )=0
Calculate g( 1 ),
g( 1 )=2| ( 1 )− 1 2 |−1 g( 1 )=2( 1 2 )−1 g( 1 )=0
It can be observed that f( 1 )=g( 1 ).
Calculate f( 2 ),
f( 2 )= ( 2 ) 2 −( 2 ) f( 2 )=2
Calculate g( 2 ),
g( 2 )=2| ( 2 )− 1 2 |−1 g( 2 )=2( 3 2 )−1 g( 2 )=2
It can be observed that f( 2 )=g( 2 ).
So, f( a )=g( a ) for all a∈A
Hence, the functions f and g are equal.