The correct option is B 2
Let the four terms in an AP are (a−3d),(a−d),(a+d) and (a+3d).
Given, a1+a4=10
⇒(a−3d)+(a+3d)=10
⇒2a=10⇒a=5
and a2⋅a3=24
⇒(a−d)(a+d)=24
⇒(a2−d2)=24
⇒25−d2=24
⇒d2=1
Therefore, d=±1
When (d=1), then terms are : 2,4,6,8
and when (d=−1), then terms are: 8,6,4,2.