Let A,B and C be the sets such that A∪B=A∪C and A∩B=A∩C. Show that B=C
Open in App
Solution
Given that AUB = AUC ⇒ (AUB) ∩ C = (AUC) ∩C ⇒ (A∩C) U (B∩C) = C [ ∴(AUC)∩C = C ] ⇒ (A∩B) U (B∩C) = C ..........(1) [ ∴(A∩C) = A∩B ] Again AUB = AUC (AUB) ∩ B = (AUC) ∩ B B = (A∩B) U (C∩B) = (A∩B) U (B∩C) ...........(2) From 1 & 2 we get B = C