Let a,b,c∈R such that a+b+c=π. If f(x)=⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩sin(ax2+bx+c)x2−1,if x<1−1,if x=1asgn(x+1)cos(2x−2)+bx2,if 1<x≤2 is continuous at x=1, then the value of (a2+b2) is
[Here, sgn(k) denotes signum function of k]
Open in App
Solution
f(1−)=limx→1−sin(ax2+bx+c)(x2−1)
Applying L'Hospital Rule f(1−)=limx→1−cos(ax2+bx+c)×(2ax+b)2x =−(2a+b)2 as a+b+c=π
f(1+)=limx→1+asgn(x+1)cos(2x−2)+bx2=a+b
And f(1)=−1
Since, f(x) is continuous at x=1, ∴f(1−)=f(1+)=f(1) ⇒−(2a+b)2=a+b=−1 ⇒a=3,b=−4 ∴a2+b2=(3)2+(−4)2=25