Let a,b∈R be such that a,a+2b,2a+b are in A.P and (b+1)2,ab+5,(a+1)2 are in G.P then (a+b) equals
Open in App
Solution
a,a+2b,2a+b are in A.P ∴2(a+2b)=a+2a+b⇒a=3b...(i) and (b+1)2,ab+5,(a+1)2 are in G.P ∴(ab+5)2=(a+1)2⋅(b+1)2 ⇒(3b2+5)=±(3b+1)(b+1) ∴3b2+5=3b2+4b+1⇒b=1 and 3b2+5=−3b2−4b−1⇒3b2+2b+3=0D<0 So, b=1,a=3 ∴a+b=4