Let A=⎡⎢⎣1−1121−3111⎤⎥⎦ and 10B=⎡⎢⎣422−50a1−23⎤⎥⎦.
If B is the inverse of A, then the value a is:
Open in App
Solution
Here, A=⎡⎢⎣1−1121−3111⎤⎥⎦
∴|A|=∣∣
∣∣1−1121−3111∣∣
∣∣ =1(1+3)+1(2+3)+1(2−1) =4+5+1=10 ⇒adjA=⎡⎢⎣4−5120−2253⎤⎥⎦T=⎡⎢⎣422−5051−23⎤⎥⎦
We know, inverse of a matrix A is given as A−1=1|A|adjA ⇒B=A−1=110⎡⎢⎣422−5051−23⎤⎥⎦