The correct option is D 2√3
A=⎡⎢⎣2b1bb2+1b1b2⎤⎥⎦ where b>0
⇒|A|=2[2(b2+1)−b2]−b[2b−b]+1[b2−b2−1]
⇒|A|=2b2+4−b2−1
⇒|A|=b2+3
We have to calculate, min(det(A)b)
⇒b2+3b=b+3b
Let f(b)=b+3b
⇒f′(b)=1−3b2
⇒f′′(b)=6b3
For maxima and minima, f′(b)=0
∴b=√3 (∵b>0)
and f′′(√3)>0
Therefore, f(b) is minimum at b=√3
∴ Minimum value of f(b)=det(A)b is
f(b)=f(√3)=√3+3√3.
⇒f(√3)=2√3
Minimum value of det(A)b is 2√3