Let A=⎡⎢⎣630252011⎤⎥⎦ and B be the adjoint of A. Then the value of det(det(A−1)(A2B)T) is
Open in App
Solution
A=⎡⎢⎣630252011⎤⎥⎦
|A|=18−6=12
Now, det(det(A−1)(A2B)T) =(det(A−1))3⋅det((A2B)T) =(det(A−1))3⋅det(A2B) =(det(A−1))3⋅(det(A))2det(B) =(det(A−1))3⋅(det(A))2(detA)2 [∵det(adjA))=(detA)n−1, where n is the order of A.] =1(det(A))3⋅(det(A))4 =detA=12