The correct option is
A 2f2(x)−f2(y)=(2√x)2−(2√y)2
⇒f(x)=2√x+k
Given f(0)=2
⇒2=2×=0+k⇒k=2
f(x)=2(√x+1)
x should be non negative
Since we have root function
⇒x≥0
⇒x∈(0,∞)
g(x)=max{f(x),6,7,|x|},x∈[0,10]
2√x+2>x(|x|=x,x≥0)
4x>x2+4−4x
x2−8x+4<0
(x−4)2−12<0⇒0<x<2(2+√3)
x<7.4
2√x+2>7
√x>2.5
x>6.25
|x|>7
x>7
⇒g(x)=⎧⎪⎨⎪⎩7;0≤x<6.252√x+2;6.25≤x<2(2+√3)|x|;x≥2(2+√3)
g′(x)=⎧⎪⎨⎪⎩0;0≤x<6.251/√x;6.25≤x<2(2+√3)|x|/x;x≥2(2+√3)
at x=6.25
limx→6.25+g′(x)=limx→6.25+0=0
limx→6.25−g′(x)=limx→6.25−1√x=1√6.25=12.5
LHL≠RHL ⇒Non differentiable
x=2(2+√3)
limx→(4+2√3)+g′(x)=∣∣4+2√3∣∣4+2√3=1
limx→(4+2√3)−g′(x)=1√4+2√3≠1
LHL≠RHL ⇒Non differentiable
⇒At 2 points the function is non derivable