Let a=^i+4^j+2^k,b=3^i−2^j+7^k and c=2^i−^j+4^k. Find a vector d which is perpendicular to both a and b and c.d = 15
The vector which is perpendicular to both a and b must be parallel to a×b.
Now, a×b=∣∣
∣
∣∣^i^j^k1423−27∣∣
∣
∣∣=^i(28+4)−^j(7−6)+^k(−2−12)=32^i−^j−14^k
Let d=λ(a×b)=λ(32^i−^j−14^k)
Also, c.d=15⇒(2^i−^j+4^k).λ(32^i−^j−14^k)=15
⇒2×(32λ)+(−1)×(−λ)+4×(−14λ)=15⇒64λ+λ−56λ=15⇒λ=159=53
∴ Required vector, d=53(32^i−^j−14^k)