Let A=⎡⎢⎣2070101−21⎤⎥⎦ and B=⎡⎢⎣−x14x7x010x−4x−2x⎤⎥⎦ are two matrices such that AB=(AB)−1 and AB≠I (where I is an identity matrix of order 3×3). Find the value of Tr.(AB+(AB)2+(AB)3+...+(AB)100) where Tr.(A) denotes the trace of matrix A.
A
98
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
99
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
100
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
101
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C 100 A=⎡⎢⎣2070101−21⎤⎥⎦ and B=⎡⎢⎣−x14x7x010x−4x−2x⎤⎥⎦ AB=⎡⎢⎣2070101−21⎤⎥⎦⎡⎢⎣−x14x7x010x−4x−2x⎤⎥⎦=⎡⎢⎣5x14x0010010x−25x⎤⎥⎦ but,AB=(AB)−1⇒(AB)2=I ⇒(AB)2=⎡⎢⎣5x14x0010010x−25x⎤⎥⎦⎡⎢⎣5x14x0010010x−25x⎤⎥⎦=⎡⎢⎣25x270x2+14x00100(5x+1)(10x−2)25x2⎤⎥⎦=⎡⎢⎣100010001⎤⎥⎦ ⇒x=−15 Tr.(AB+(AB)2+(AB)3+...+(AB)100)=Tr.(AB+I+(AB)+...+I) tr(AB)=10x+1=−1 and tr(I)=3 ∴Tr.(AB+I+(AB)+...+I)=(−1+3−1+3......+3)=50(3−1)=100 Hence, option C.