Let a matrix A=[23sinx4cosx−1],x∈R, then the maximum value of sum of minors of elements of A is
Open in App
Solution
Given : A=[23sinx4cosx−1] ⇒M11=−1,M12=4cosx,M21=3sinx,M22=2 ⇒Sum of minors =1+3sinx+4cosx
We know, |3sinx+4cosx|≤√32+42
So, maximum value of sum of minors =6