wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let An=nC0nC1+nC1nC2+...+nCn−1nCn and An+1An=154,then n equals

A
8,4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
4,6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2,4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
8,6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 2,4
(1+x)n=nC0+nC1x+nC2x2+...+nCnxn
(1+1x)n=nC0+nC1(1x)+nC2(1x)2+...+nCn(1x)n
An=coefficientofxin(1+x)n(1+1x)n
=coefficientofxin(1+x)2nxn
=coefficientofxn+1in(1+x)2n
=2nCn+1
An+1=2(n+1)Cn+1+1=2n+2Cn+2
An+1An=154(given)
2n+2Cn+22nCn+1=154
(2n+2)!(n+2)!n!×(n+1)!(n1)!(2n)!=154
(2n+2)(2n+1)n(n+2)=154
16n2+24n+8=15n2+30n
n26n+8=0
n24n2n+8=0
n(n4)2(n4)=0
(n4)(n2)=0
n=2,4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Beyond Binomials
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon