The correct option is B 1
Let A=(pqrs] and B=(ab]
Given AB = B. Thus,
(pqrs](ab]=(ab]or(pa+qbra+sb]=(ab]or pa+qb = a −(1) ra+sb = b −(2)Eliminating a,b from (1) and (2), we have−(p−1)a+qb = 0 ra+(s−1)b = 0 or(p−1qrs−1](ab]=(00] (p−1qrs−1∣∣∣=0or( p−1)(s−1)−qr=0or ps−(p+s)+1−qr=0or ps−qr=(p+s)−1=2−1=1