Let a, x, b be in A.P.; a, y, b in G.P. and a, z, b in H.P. where a and b are distinct positive real numbers. If x = y + 2 and a = 5z, then
y2=zx
x>y>z
a=9,b=1
a,x,b in A.P⇒2x=a+ba,y,b in G.P⇒y2=aba,z,b in H.P⇒z=2aba+b∴x>y>z(A>G>H)
At y2=xz
∴a=5z (given) ..... (i)
a5=2aba+b or a=9b
x = y + 2 .... (ii)
or a+b2=√ab+2
or 5b = 3b + 2
b = 1 and a = 9