Let A={xϵR:x≠0,−4≤x≤4} and f:A→R be defined f(x)=|x|x for xϵA. Then A is
{1,−1}
{x:0≤x≤4}
{1}
{x:−4≤x≤0}
As, x=x, x≥0−x<0 So, f(x)=xx When x<0 i.e. xϵ[−4,0)f(x)=x−x=−1 and when x>0 i.e. xϵ(0,4]f(x)=xx=1 So, range (f) = 1, 1