A) Δ1=∣∣
∣∣xyx+yyx+yxx+yxy∣∣
∣∣
Applying C1→C1+C2+C3, we get
Δ1=∣∣
∣
∣∣2(x+y)yx+y2(x+y)x+yx2(x+y)xy∣∣
∣
∣∣
Again applying R2→R2−R1,R3→R3−R1, we get
Δ1=∣∣
∣
∣∣2(x+y)yx+y0x−y0x−y−x∣∣
∣
∣∣=2(x+y)(−x2+y(x−y))=−2(x3+y3)
B) Δ2=∣∣
∣∣1xy1x+yy1xx+y∣∣
∣∣
Applying R2→R2−R1,R3→R3−R1, we get
Δ2=∣∣
∣∣1xy0y000x∣∣
∣∣=1(xy−0)=xy
C) Δ3=∣∣
∣∣xx+yx+2y−xx00−xx∣∣
∣∣
Applying R2→R2+R1, we get
Δ3=∣∣
∣∣xx+yx+2y02x+yx+2y0−xx∣∣
∣∣=x((2x+y)x+x(x+2y))=x(2x2+xy+x2+2xy)=3x2(x+y)
D) Δ4=∣∣
∣
∣∣1xx21yy2111∣∣
∣
∣∣=1(y−y2)−1(x−x2)+1(xy2−yx2)=(x−y)(y−1)(1−x)