The correct option is C -2
Given Δ(x)=∣∣
∣
∣∣(x−2)(x−1)2x3(x−1)x2(x+1)3x(x+1)2(x+2)3∣∣
∣
∣∣
Let Δ(x)=a0+a1x+a2x2+a3x3+.....
∣∣
∣
∣∣(x−2)(x−1)2x3(x−1)x2(x+1)3x(x+1)2(x+2)3∣∣
∣
∣∣=a0+a1x+a2x2+a3x3+..... .....(1)
Put x=0 in (1)
⇒∣∣
∣∣−210−101018∣∣
∣∣=a0
⇒a0=−2(−1)−1(−8)=10
So, Δ(x)=∣∣
∣
∣∣(x−2)(x−1)2x3(x−1)x2(x+1)3x(x+1)2(x+2)3∣∣
∣
∣∣=10+a1x+a2x2+a3x3+..... ....(2)
Differentiating (2) w.r.t x, we get
∣∣
∣
∣∣12(x−1)3x2(x−1)x2(x+1)3x(x+1)2(x+2)3∣∣
∣
∣∣+∣∣
∣
∣∣(x−2)(x−1)2x312x3(x+1)2x(x+1)2(x+2)3∣∣
∣
∣∣+∣∣
∣
∣∣(x−2)(x−1)2x3(x−1)x2(x+1)312(x+1)3(x+2)2∣∣
∣
∣∣=a1+2a2x+3a3x2+.....
Put x=0 in above equation
⇒∣∣
∣∣1−20−101018∣∣
∣∣+∣∣
∣∣−210103018∣∣
∣∣+∣∣
∣∣−210−1011212∣∣
∣∣=a1
⇒a1=−17−2+17=−2