The correct options are
A (a+b) is a factor of f(a,b).
C ab is a factor of f(a,b)
f(a, b) =∣∣
∣
∣∣aa2012a+b(a+b)201a+2b∣∣
∣
∣∣
C2→C2−aC1
f(a,b)=∣∣
∣
∣∣a001a+b(a+b)201a+2b∣∣
∣
∣∣
=a((a+b)(a+2b)−(a+b)2)
=a(a2+3ab+2b2−a2−2ab−b2)
=a(ab+b2)
=ab(a+b)
Hence, both ab and a+b are factors of the given determinant.