The correct option is C f2022(2019)=40332017
f(x)=x−5x−3⇒f(f(x))=x−5x−3−5x−5x−3−3=2x−5x−2
∴f2(x)=2x−5x−2f3(x)=f(f2(x))=2x−5x−2−52x−1x−2−3=3x−5x−1
Now,
f4(x)=f(f3(x))=3x−5x−1−53x−5x−1−3=x
∴f4(x)=x⇒f5(x)=f(x),f6(x)=f2(x),f7(x)=f3(x) ⋯∴f4α(x)=x,f4α+1(x)=f(x),f4α+2(x)=f2(x),f4α+3(x)=f3(x),α∈N
Now,
f2019(2020)=f3(2020)=60152019
f2020(2021)=2020
f2022(2019)=f2(2019)=40332017
f2021(2020)=f(2020)=20152017