f(n)=∑nk=1k2(Cr)2k(Ck)=kn!k!(n−k)!=n(n−1)!(k−1)!(n−k)!=n(n−1Ck−1)∑nk=1k2C2k=∑nk=1(kn!k!(n−k)!)2=∑nk=1(n(n−1Ck−1))2=n2∑nk=1(n−1Ck−1)2f(n)=n2∑nk=1(n−1Ck−1)2(1)Weknowthat(1+x)n=C0+C1x1+C2x2+........Cnxn(1+x)n=C0xn+C1xn−1+C2xn−2+........CnMultiplyBoththeequationsandComparethecoefficientsofxnWeget2nCn=C20+C21+C22+..........C2nWhenn=n−1then2n−2Cn−1=C20+C21+C22+..........C2n−1(2)From(1)wehavef(n)=n2(C20+C21+C22+..........C2n−1)Using(2)Wegetf(n)=(n2)2n−2Cn−1f(5)=(52)10−2C5−1=258C4=1750