Rationalization Method to Remove Indeterminate Form
Let fx=1+b2...
Question
Let f(x)=(1+b2)x2+2bx+1 and let m(b) be the minimum value of f(x). As b varies, the range of m(b) is
A
[0,1]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
[0,12]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
[12,1]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(0,1]
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D(0,1] Weknowthatminimumvalueoff(x)=ax2+bx+cism(b)=4ac−b24a∴forf(x)=(1+b2)x2+2bx+1Wehave,a⟶1+b2b⟶2bc⟶1∴m(b)=4(1+b2)−4b24(1+b2)=1(1+b2)Nowddb{m(b)}=−2b(1+b2)2=0forextremevalue⇒b=0∴m(b)=11+0=1m(b)=1(1+b2)isapositivequantity.Soitsminimumvalueiszero.∴Therangeofm(b)is(0,1]Ans−OptionD.