Let f(x)=(1+b2)x2+2bx+1 and m (b) the minimum value of f (x) for a given b. As b varies. The range of m (b) is
(0,1]
f(x)=(1+b2)[x2+2b1+b2 x+b2(1+b2)b2]+1=(1+b2)(x+b1+b2)2+11+b2⩾11+b2∴m(b)=11+b2. So, range of m(b) = (0,1].
Hence (d) is the correct answer.