wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x2)=1x for x>0, f(1)=1 and g(sin2x1)=cos2x+p for all xR, g(1)=0. If h(x)={f(x),x>0g(x),1x0 is a continuous function, then the absolute value of 2p is

Open in App
Solution

f(x2)=1x
f(x)=1x for x>0
f(x)=2x+C
f(1)=1 C=1
f(x)=2x1 for x>0

and g(sin2x1)=cos2x+p xR
g(cos2x)=cos2x+p
g(x)=px, x[1,0]
g(x)=pxx22+K
g(1)=0
0=p12+K K=12+p
g(x)=pxx22+12+p

h(x)=2x1,x>0pxx22+12+p,1x0

At x=0,
L.H.L.=R.H.L.=f(0)
1=12+p
p=32
Hence, 2p=3
Absolute value of 2p is 3.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Determinants
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon