f′(x2)=1x
⇒f′(x)=1√x for x>0
⇒f(x)=2√x+C
f(1)=1 ⇒C=−1
∴f(x)=2√x−1 for x>0
and g′(sin2x−1)=cos2x+p ∀ x∈R
⇒g′(−cos2x)=cos2x+p
⇒g′(x)=p−x, ∀ x∈[−1,0]
⇒g(x)=px−x22+K
g(−1)=0
⇒0=−p−12+K ⇒K=12+p
∴g(x)=px−x22+12+p
∴h(x)=⎧⎨⎩2√x−1,x>0px−x22+12+p,−1≤x≤0
At x=0,
L.H.L.=R.H.L.=f(0)
⇒−1=12+p
⇒p=−32
Hence, 2p=−3
Absolute value of 2p is 3.