The correct option is
C 6Given, f(x)=ax2+bx+c,g(x)=px2+qx+r
Since, f(1)=g(1)
⇒a+b+c=p+q+r ...... (i)
f(2)=g(2)
⇒4a+2b+c=4p+2q+r ....... (ii)
Subtracting Eq. (ii) from Eq. (i), we get
3a+b=3p+q ..... (iii)
f(3)−g(3)=2
⇒(9a+3b+c)−(9p+3q+r)=2
⇒3(3a+b)+c−3(3p+q)−r=2
⇒c−r=2 .... (∵3a+b=3p+q) (iv)
From Eq. (i),
(a−p)+(b−q)+(c−r)=0
⇒(a−p)+(b−q)+2=0 ..... (v)
From Eq. (ii)
4(a−p)+2(b−q)+c−r=0
⇒2(a−p)+(b−q)+1=0 ..... (vi)
Subtracting Eq. (v) from Eq. (vi), we get
(a−p)−1=0
a−p=1
∴ From Eq. (v), b−q=−3
Now,
f(4)−g(4)=(16a+4b+c)−(16p+4q+r)
=16(a−p)+4(b−q)+(c−r) ..... (vii)
Substituting the values of (a−p),(b−q) and (c−r) from above in Eq. (vii), we get
f(4)−g(4)=16×1+4(−3)+2
=16−12+2=6