The correct option is A (−√130,−√2)∪(√2,√130)
Given:
f(x)={x3−x2+10x−5,x≤1−2x+log2(b2−2),x>1.
Since f(x) has the greatest value at x=1.
Then, f(1)>f(1+h) as h→0+
⇒5>−2(1+h)+log2(b2−2) as h→0+
⇒5>−2+log2(b2−2)
⇒log2(b2−2)<7
⇒b2<27+2
⇒b2<130
⇒−√130<b<√130 ⋯(i)
For log2(b2−2), it is defined when (b2−2)>0
⇒(b−√2)(b+√2)>0
⇒b∈(−∞,−√2)∪(√2,∞) ⋯(ii)
From (i) and (ii)
∴b∈(−√130,−√2)∪(√2,√130)