wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x)=∣ ∣ ∣1+sin2xcos2x4sin2xsin2x1+cos2x4sin2xsin2xcos2x1+4sin2x∣ ∣ ∣, then the maximum value of f(x)=.

Open in App
Solution

=(1+sin2x)[(1+cos2x)(1+sin2x)4sin2xcos2x]+cos2x[4sin2xsin2xsin2x(1+4sin2x)]+4sin2xsin2x(cos2x1cos2x)
=(1+sin2x)(1+4sin2x+cos2x)+cos2x(sin2x)4sin2xsin2x
=1+4sin2x+cos2x+sin2x+4sin2xsin2x4sin2xsin2x+cos2xsin2xcos2xsin2x
=2+4sin2x (sin2x+cos2x=1)
f(x)=ddx(4sin2x+2)=8cos2x
f(x)=08cos2x=0
cos2x=0
2x(2n1)π2
x=(2n1)π4
For max value
f(α)<0
ddx(8cos2x)=16sin2x<0sin2x>0
When cos2x=0sin2x=±1. Since sin2x>0
nsin2x=1
Max f(a)=2+4(1)=6

1053332_770412_ans_8649f651ed7f4a8fa6a5afa978bf5fb7.png

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon