The correct option is A 199
Given f(x)=3x√3+3x...(i)
f(1−x)=√33x+√3.....(ii)
∴f(x)+f(1−x)=1
Now ∑2nr=0f(r2n+1)=f(0)+∑2nr=1(r2n+1)(r=0,1,2,....2n)
=f(0)+f(12n+1)+f(22n+1)+.....+f(2n−12n+1)+f(2n2n+1)
=f(0)+f(12n+1)+f(2n2n+1)+f(22n+1)+f(2n−12n+1)+....+upton
∑2nr=0f(r2n+1)=11+√3+1+1+....+1
⇒11+√3+199=11+√3+n⇒n=199