The correct option is C decreasing in (−∞,2)
Given : f(x)=ex−e−x,g(x)=ln(x2−5x+6)
we can see f(x) is defined for all x∈R and g(x) is defined when x2−5x+6>0⇒x∈(−∞,2) ∪ (3,∞)⋯(1)
Now, h(x)=f(g(x))=x2−5x+6−1x2−5x+6
(∵elny=y,y>0)
⇒h′(x)=2x−5+2x−5(x2−5x+6)2
⇒h′(x)=(2x−5)(1+1(x2−5x+6)2)
∵(1+1(x2−5x+6)2)>0 for all x in its domain.
For increasing, h′(x)≥0:
⇒x≥52
from (i),x∈(3,∞)
For decreasing, h′(x)≤0:
⇒x≤52
from (i),x∈(−∞,2)