Let f(x)=x24(2lnx−1)−ex+2k,k∈R. If least value of K for which √f(x) is defined for all x∈(0,∞) is ∝ then [∝] is (where[.]denotes greatest integer function)
Open in App
Solution
F'(x) = x lnx - e f′(x)>0→x∈(e,∞) f′(x)<0→x∈(0,e) f(x)min=f(e)=2k−34e2 2k−34e2≥0⇒k≥38e2 So ∝=38e2So[∝] is = 2