The correct option is B has an absolute minimum at x=0
f(x)=(1+x)n−(1+nx)
⇒f′(x)=n[(1+x)n−1−1].
Now for x=0,f′(0)=0
and for x>0,f′(x)>0.
Thus f inereases on [0,∞) i.e.f(x)≥f(0)=0
For −1≤x<0, 0≤1+x<1 so (1+x)n−1<0.
So f decreases on [−1,0) i.e. f(x)≥f(0)=0 for x∈[−1,0).
Hence f has an absolute minimum at x=0.