g(x)=f(x+1)⇒g(x)={2−|x+1|,|x+1|≤1⇒−2≤x≤00,x<−2, x>0
3∫−3g(x) dx=−2∫−3g(x) dx+0∫−2g(x) dx+3∫0g(x) dx
g(x) is 0 for x<−2 and x>0
⇒3∫−3g(x) dx=0∫−2g(x) dx=0∫−2(2−|x+1|)dx
=0∫−22 dx−0∫−2 |x+1| dx
=4+−1∫−2(x+1) dx−0∫−1(x+1)dx
=4+[x22+x]−1−2−[x22+x]0−1
=4+[12−1−(42−2)]+[12−1]
=3