Let f(x)=⎡⎢⎣e3x−1xifx≠03ifx=0 then f′(0), is?
Given that
f(x)= e3x−1x , x ≠ 0
3 ,x =0
Using formula
ex=1+ x + x22!+x33!+ ...... + ......
Now,
f(x)= 1+3x+(3x)22!+(3x)33!+ ...... −1x
=3x+9x22!+27x33!x
f(x)=3+9x2!+273!x2+ ......
On differntaning and we get.
f′(x)=0+92!+543!x+ ......
Taking x=0
So,
f′(0)=92!
f′(0)=92
Hence, This is the answer.