Let f(x)={x+a,if x≥1ax2+1,if x<1 , then f(x) is differentiable at x = 1 if
a=1
a=0
a=2
a=1/2
f1(−1−)=f1(1+)⇒1=2a⇒a=12
Let f(x) = ⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩a|x2−x−2|2+x−x2,x<2b,x=2x−[x]x−2,x>2 , where [.] denotes the greatest integer function.
If f(x) is continuous at x = 2, then